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Abstract. We perform an in-depth analysis of current state-of-the-art wavelet-
based 3D model coding techniques and then present a new one that outperforms
them in terms of compression efficiency and, more importantly, provides full
spatial and SNR scalability: PLTW (Progressive Lower Tree Wavelet) coding.
As all SNR scalable bit-streams, ours can be used in heterogeneous networks
with a wide range of terminals, both in terms of processing power and band-
width. But because of being spatially scalable, the PLTW bit-stream does not
impose on the less powerful terminals the need of building detail trees as deep
as required by the maximum LOD, because the wavelet coefficients are sent on
a per-LOD basis, thus achieving a “local” SNR scalability within a “global”
spatial scalability. In particular, we show that our technique provides a substan-
tial advantage over the only similar one in a current ISO standard (MPEG-4),
and thus suggest that PLTW be considered for its future versions.

1 Introduction

Traditional coding algorithms have only focussed on efficient compression, with the
sole objective of optimizing data size for a given reconstruction quality. However,
due to the growth of the Internet and networking technology, users with different
processing capabilities and network bandwidth can easily communicate. As a result,
efficient compression alone is not enough. A new challenge appears: providing a sin-
gle flexible bit-stream that can be consumed by multiple users with different terminal
capabilities and network resources. Scalable coding is the response to this challenge.
A scalable coder produces a bit-stream containing embedded subsets, each of which
represents increasingly better versions of the original data, either in terms of resolu-
tion or distortion. Different parts of the bit-stream can then be selected and decoded
by the terminal to meet certain requirements. Low performance terminals will only
decode a small portion of the bit-stream and reconstruct a low quality and/or resolu-
tion version of the source, whereas higher performance decoders will take advantage
of the reception of bigger portions to achieve higher quality and/or resolution.

Two different types of scalability can be typically applied to 3D geometry coding,
exactly as in the better known case of image coding: SNR (Signal to Noise Ratio)
scalability and spatial scalability. SNR scalability refers to the possibility of having
different terminals decode the 3D model (or image) with the same spatial resolution
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but with different fidelity. On the other hand, spatial scalability is the feature in the
bit-stream that allows to decode the 3D model (or image) with different spatial resolu-
tions, i.e., number of vertices/facets (or pixels).

Both scalability types are desirable, and so is progressiveness in the bit-stream, es-
pecially in the case of streaming scenarios where bandwidth is a limiting factor and it
is important to be able to receive and display a coarse version of the media as soon as
possible, and later refine it gradually, as more data are transmitted. However, for ter-
minals with low processing power, both in terms of CPU and RAM, and with low
resolution screens, as is the case of cell phones (and to a lesser extent that of PDAs),
perhaps the most important kind of scalability is the spatial one. There is little point in
encoding a 3D mesh so that may be progressively refined to have 100000 triangles if
the cell phone that must render it can barely handle hundreds. And there is even less
point in doing so if the decoding process that must take place prior to the rendering
one will completely eat up all the cell phone resources. And even less if, anyway, no-
body will be able to tell the difference between a 100 triangle mesh and a 1000 trian-
gle one when rendered on a screen of 200x200 pixels!

In this paper we review the scalability of current state-of-the-art WSS (Wavelet
Subdivision Surface) coders [3] and then present a new algorithm that outperforms
previous techniques in terms of compression efficiency and, more importantly, pro-
vides full spatial and SNR scalability. We have chosen the WSS modelling/coding
paradigm for its adequacy to approximating and manipulating 3D surfaces at different
LODs (Levels Of Detail). The successive control meshes yielded along the subdivi-
sion process, usually called LODs themselves, are pyramidally nested, and inherently
define a multi-resolution model of the limit 3D surface, which is most appropriate to
address spatial scalability — without forgetting the SNR scalability, which comes
naturally from using wavelet coefficients.

The rest of this paper is organized as follows. Section 2 reviews the SPIHT algo-
rithm [6] and analyses both its scalability and the extra benefits of entropy coding its
output. In Section 3, we present our PLTW coder and describe the proposed modifica-
tions to the LTW algorithm [5] to achieve both SNR and spatial scalability. Section 4
compares the rate-distortion performance of the proposed coder with other SPIHT-
based coders. Finally, Section 5 concludes our presentation.

2 Analysis of SPIHT-Based Coders

For almost a decade already, the SPIHT algorithm [6] has been the reference against
which to compare other coding techniques based on the wavelet transform. It was
originally designed to code scalar wavelet coefficients, but this has been no obstacle
for extending it to handle 3D coefficients, such as the ones resulting from colour im-
ages or 3D surfaces modelled thanks to WSSs [2][3][4]. Typically, a coordinate trans-
form is applied to the coefficients coming from the RGB pixels or XYZ detail vectors,
so that their three components are decorrelated, and then the SPIHT algorithm is run
on each of the three transformed components, yielding three independent bit-streams
whose bits are interleaved in some sensible way.
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2.1 Scalability

Due to the coefficient ordering and bit-plane encoding achieved by the SPIHT algo-
rithm, the resulting bit-stream is inherently SNR scalable: every bit contributes to re-
duce the reconstruction error as much as possible for the number of already read bits.
This feature allows the decoder to simply stop reading from the bit-stream at any
point and have the best possible reconstructed model for that number of decoded bits.
Typical rate-distortion curves for a geometry coder based on the SPIHT algorithm are
shown in Fig. 1. The horizontal axis reflects the number of bits per vertex while the
vertical one shows the PSNR, defined as PSNR = 20 log,o(bbox/d), where bbox is the
bounding box diagonal, and d is the L* distance between the original and recon-
structed meshes, measured with MESH [1].
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Fig. 1. Rate-distortion curves for different quantization schemes

Besides, as the generated bit-stream is fully embedded, it can also be truncated at a
given size in case the target file size is a restriction. However, one might wonder
whether it is better to cut the (long) bit-stream produced by running the coder over
finely quantized coefficients, or to consume the whole (shorter) bit-stream resulting
from coarsely quantized coefficients. Fig. 1 shows the rate distortion curves obtained
for bit-streams produced with different sets of quantization values. In all the cases,
coefficients have been expressed using local frames to decorrelate energy and save
bits by quantizing each of the tangential components four times more coarsely (i.e.,
with two bits less) than the normal one [2][3]. The three values in each of the entries
of the legend reflect the number of bits assigned to the normal and two tangential
components, respectively: nbitsylnbitstInbitst,. It can be seen how, for a given target
size S, the best option is to choose the values nbitsy, nbitsy; and nbitst, (note that
there is only one variable if one sets nbitst, = nbitst, = nbitsy — 2) so that the resulting
bit-stream is slightly larger than S, and then truncate it to S. In fact, quantization sets
of high values (e.g., 14112112) hardly contribute to lessen the reconstruction error
compared to sets with lower values (08106106 or 10108I08), even though the generated
bit-stream is substantially larger.

Nevertheless, although the SPIHT coder is fully SNR scalable, it does not support
spatial scalability and does not yield a bit-stream that can be easily parsed according
to a given maximum resolution (i.e., number of subdivisions or LODs) imposed by
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Fig. 2. Bit-stream distribution among different LOD’s for the venus model: coefficient (left)
and navigation (right) bits assigned to each LOD

the decoder. The reason for this is that the sorting pass of the SPIHT algorithm groups
together coefficients with similar magnitude, independently of the LOD they belong
to, and then outputs their bits interleaved. The wavelet transform decomposes the ini-
tial model into bands with details of diminishing energy, which makes very likely that
coefficients from the root or upper branches of the detail tree are sent before those of
the leaves. However, Fig. 2 proves how that assumption is not always true by showing
the distribution among levels of the read bits for each part of the bit-stream. For this
bit-to-level assignment, we have distinguished two types of bits: bits that can be di-
rectly attributed to a single coefficient; and “navigation” bits gathering information
from multiple coefficients (which are the descendants of some other), which are used
to guide the algorithm through the different stages. The assignment of the first ones is
straightforward and it is depicted in Fig. 2 (left). For the second ones, we have de-
cided to split each bit between all the coefficients involved and impute them only a
fraction of that bit. For instance, let us call nsubdiv the total number of subdivisions
(in Fig. 2, nsubdiv = 4), and consider one of the navigation bits that must be output to
reflect the significance, with respect to the current bit-plane, of the descendants of a
given coefficient of LOD nsubdiv — 2. As such a coefficient has (in general) four sons
and sixteen grandsons, 4/20 bits will be imputed to LOD nsubdiv — 1 and 16/20 to
LOD nsubdiv. The fraction of navigation bits vs. the fraction of read bits is plotted in
Fig. 2 (right). As it is shown, at any stage of the bit-stream, the bit contribution comes
from all levels, and even at its beginning, where almost all the coefficient bits come
from lower LODs, the amount of navigation bits from LOD 4 is especially high —
which is not at all desirable if a terminal can only handle, say, LOD 2, as it may al-
ready be obvious, but explained further in Section 4.

2.2 Entropy Coding

Even though the SPIHT algorithm is very efficient at exploiting the correlations be-
tween the detail of a parent and those of its descendants, its output can be further
compressed by using entropy coding. In this respect, arithmetic coding [8] is probably
the best choice, as it allows to use a fractional number of bits per symbol, although at
the expense of larger (de)coding complexity.
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As already stated in the original SPIHT paper [6], there is little gain by entropy
coding coefficient signs or bits output during the refinement pass. However, signifi-
cance bits are not uniformly distributed: for early bit-planes, most coefficients are in-
significant, resulting in zeroes, whereas for later bit-planes, many coefficients become
significant, resulting in ones. Besides, there is also a statistical dependence between
the significance of a coefficient and those of its descendants, and between spatially
close coefficients.

We have then implemented arithmetic coding of the coefficients using two ap-
proaches. The first one consists in using an adaptive model for each type of bit (sig-
nificance, sign, refinement and so on) sent to the output, reflecting the fact that some
symbols tend to be grouped. The second approach takes also advantage of the spatial
correlation between coefficients by grouping the significance bits of the children of a
detail and coding them as a single symbol [6].

Table 1 shows the efficiency gain obtained by using arithmetic coding. There is a
benefit of around 6% when the first approach (row “AC”) is followed and around 8%
when the more complex modelling (row “AC++") is considered. In a typical asym-
metric scenario where one encoder runs as an off-line process on a much more power-
ful machine than the ones used by the many decoders, so encoder complexity is not as
big an issue as decoder complexity is. The ultimate decision of whether to use entropy
coding or not is then a compromise between compression and decoder complexity.
Nevertheless, notice that the second approach is hardly preferable to the first one, as it
only provides a very slight compression improvement, whereas the complexity of its
decoder (especially in terms of memory) is considerably larger.

Table 1. Effect of arithmetic coding of the SPIHT bit-stream for some models

model venus bunny horse dinosaur
no AC 1414885 646111 662048 1466663
AC 1326293 603238 621358 1381779
AC++ 1298064 590795 607414 1353311

3 Proposed Technique: Progressive Lower Tree Wavelet Coder

The proposed technique builds upon the work described in [5] for still image coding,
which represents a low complexity alternative to traditional wavelet coders, like
SPIHT [6] and EBCOT [7], with a higher compression performance and featuring
spatial scalability. As a counterpart, it does not provide full SNR scalability due to the
fixed, sequential traversal of the coefficients. To achieve both spatial and SNR scal-
ability, we have introduced bit-plane encoding of the coefficients for each LOD.

3.1 Algorithm

In this algorithm, the quantization process is performed by following two strategies: a
scalar uniform quantization of the coefficients with nbits bits is applied prior to the
encoding itself; later on, once the algorithm is executed, the rplanes least significant
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0. INITIALIZATION
output nbits
output rplanes
1. CALCULATE LABELS
scan the bottom-most detail level in blocks B of coefficients within the same tree
for each de B
if d <27 VdeB
d = LOWER_COMPONENT Vde B
else
foreachd e B
ifd< zrplanex
d = LOWER
scan the rest of levels from bottom to top in blocks B of coefficients within the tree (top
level details will be arranged in groups of 4)
for each de B
if d < 2'7'" A d’ = LOWER_COMPONENT Vde B, ¥d’€ O(d)
d = LOWER_COMPONENT Vde B
else
foreachd e B
if d < 2'P" A d’ = LOWER_COMPONENT Vd’e O(d)
d = LOWER
if d < 27" A d’ £ LOWER_COMPONENT Vd’e O(d)
d :=ISOLATED_LOWER
2. OUTPUT COEFFICIENTS
scan the detail levels from top to bottom
LIC:=LSC =0
Add all the details not labeled as LOWER_COMPONENT to the LIC
output nbb (number of bits needed to code the largest coefficient in the LOD)
set n :=nbb
while n > rplanes
for each de LIC
output b := n™ bit of d
ifb=1
output sgn(d)
if O(d) +<
output b :=(d’ # LOWER_COMPONENT) Vd’e O(d)
move d to the LSC
for each de LSC (excluding entries just appended in this same pass)
output b := n™ bit of d
for each de LIC
output the label of d (can only be LOWER or ISOLATED_LOWER)
decrement n by one

Fig. 3. Proposed encoding algorithm

bit-planes of the coefficient are removed. As it can be seen in Fig. 3, the final algo-
rithm has two main stages.

During the first step, the coefficient trees are scanned from the leaves (bottom) to
the root (top) to try and grow subtrees of what we call “irrelevant” coefficients, i.e.,
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lower than 27", A node whose descendants (represented as O(d) in Fig. 3) are all
irrelevant is labelled as LOWER_COMPONENT. To start, all coefficients of the bot-
tom-most level (i.e., LOD nsubdiv) sharing the same parent (of LOD nsubdiv — 1) are
checked for irrelevance, and hopefully labelled all as LOWER_COMPONENT. Later
on, if an upper level node N is irrelevant and all its sons are labelled as
LOWER_COMPONENT, then N is a good candidate to be tagged itself as
LOWER_COMPONENT, yielding a new, larger lower-tree, providing that all its sib-
lings are also candidates to be tagged as LOWER_COMPONENT. However, if any of
the sons of a node N is relevant, the lower-tree cannot continue growing upwards. In
that case, those irrelevant sons of N having all their sons labelled as
LOWER_COMPONENT will be tagged as LOWER, while other irrelevant sons of N
will be tagged as ISOLATED_LOWER (see Fig. 3).

Notice that some nodes are not labelled at all, and that no extra space is needed to
store these four labels (&, LOWER, LOWER_COMPONENT, ISOLATED_LOWER),
since the lower rplanes bits of the coefficient are not coded, which allows to encode
them as codewords in the range [0, 3] as long as rplanes = 2.

In the second stage, which is our main contribution, the coefficients are sequen-
tially scanned in LODs starting from the top-most one and moving downwards. Coef-
ficients are bit-plane encoded with the help of two lists, LIC (List of Insignificant Co-
efficients) and LSC (List of Significant Coefficients), used to keep track of their
significance with respect to the current bit-plane. In each bit-plane pass #, all the coef-
ficients in the LIC are tested: those having the n™ most significant bit set are moved to
the LSC. Then, the coefficients in the LSC are processed sequentially and the n™ bit of
each of them is output. The last step before moving to the next LOD consists in en-
coding the labels of the remaining coefficients, which are still kept in the LIC. These
symbols do not contribute to lower the reconstruction error as they only provide in-
formation for the next LODs, and could even be skipped if the decoder will not de-
code further LODs.

3.2 Scalability

The hierarchical traversal of the coefficients, scanned in LODs, naturally produces a
spatially scalable bit-stream. This way, the decoder first receives all the coefficients
corresponding to a LOD and, only when it has finished reading them, it proceeds (if it
has enough resources) with those from the next. Besides, with the introduction of bit-
plane encoding, bits from each LOD are ordered in such a way that the first to arrive
are the ones that contribute more to lower the reconstruction error, while bits from
negligible coefficients arrive last. Fig. 4 shows renderings of the bunny model at dif-
ferent stages of the decoding process. First, LOD 1 is progressively reconstructed
(second row). Once all coefficients of LOD 1 have been decoded, the mesh is subdi-
vided and details in LOD 2 are processed (third row). LOD 3 (fourth row) and forth-
coming levels are sequentially decoded until the whole bit-stream is read.

Fig. 5 shows the rate distortion curves for both the original LTW coder and our
technique. The leap between LODs is clearly reflected in the curve discontinuities,
which are the result of applying a subdivision scheme with a smoothing stage, such as
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Fig. 4. Progressive reconstruction of the bunny model from a PLTW bit-stream
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Fig. 5. Scalability of the original LTW algorithm and our PLTW technique for the venus (left)
and bunny (right) models

Butterfly or Loop. This means that just by moving from a given LOD n to LOD n + 1,
the reconstruction error is reduced (this effect will not occur for Midpoint subdivision,
which only consists of an upsampling stage). Because of the sequential scanning of
the coefficients in the LTW algorithm, the distortion curves between levels are arbi-
trarily shaped, although monotonically increasing, as they depend on the also arbitrary
distribution of coefficients. In contrast, the curves for the PLTW coder demonstrate
how bits with larger contribution are sent first whereas unimportant ones are output at
the end. Note that the whole curve is not globally smooth, as in the SPIHT algorithm
(see Fig. 1), because the bit-plane encoding is only performed on a per-level basis,
while the SPIHT algorithm considers coefficients from all levels at the same time.

3.3 Entropy Coding

We have also analysed the gain obtained by entropy coding the PLTW bit-stream.
Table 2 shows there is around a 46% benefit (42% in the worst case, for all the mod-
els we tested) when adding an arithmetic coder. Therefore, the PLTW algorithm is not
as efficient as the SPIHT coder at exploiting relations between coefficients and the
use of an entropy coder is almost required. However, the number of adaptive models
needed in the arithmetic coder is still low, reducing the complexity and requirements
of both the encoder and the decoder.

Table 2. Arithmetic coding of the PLTW bit-stream

model venus bunny horse dinosaur
no AC 1681701 825543 879696 1945907
AC 970636 441077 454124 1006442

4 PLTW vs. SPIHT

We now compare the PLTW coder with other SPIHT-based coders. Fig. 6 (top) shows
the rate distortion curves for the PLTW coder and the arithmetic coded version of the
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SPIHT algorithm (following the first of the approaches described in Subsection 2.2)
for different LODs. LODs 1 and 2 are quickly reconstructed because their details are
those that contribute more to lower the error. It seems clever to cut the stream or stop
decoding after some point (e.g., 0,75 b/v for LOD 1 or 1,5 b/v for LOD 2) if only in-
terested in coarser LODs, as the bits to come will hardly increase the PSNR. How-
ever, even in those cases, the decoder needs to build the whole detail tree (including
finer LODs than those of interest) to be able to follow all the branches of the SPIHT
algorithm. On the contrary, due to the spatial scalability of the PLTW coder, the de-
coder is able to stop decoding exactly at the desired LOD without allocating extra re-
sources for further LODs — and even with a lower reconstruction error!
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Fig. 6. PLTW vs. SPIHT: Per-LOD comparison (top) and overall compression (bottom) for the
Max-Planck (left) and bunny (right) models

Fig. 6 (bottom) compares the overall compression performance of our technique
with the SPIHT-AC algorithm and the WSS tool of MPEG-4’s AFX (Animation
Framework eXtension) [4], which also uses the SPIHT, but without AC. Except at
very low rates, where the PLTW is still reconstructing upper LODs and does not
benefit from the smoothing effect of subdivision (while its competitors do), our tech-
nique always results in higher PSNRs for the same bitrate. It is also noticeable how
none of the SPIHT-based coders is able to reach the same PSNR as the PLTW coder
even employing 160% (SPIHT-AC) or 330% (MPEG-4) of the bits used by PLTW for
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the same quantization set of values. The poor results of the MPEG-4 coder are due to
the overhead introduced to support view-dependent transmission of coefficient trees.

5 Conclusion

After an in-depth analysis of current state-of-the-art techniques for the hierarchical
coding of 3D models with WSSs, we have proposed ours, the PLTW (Progressive
Lower Tree Wavelet) coder, which achieves higher compression ratios and features
both spatial and SNR scalability. Thanks to this, the same compact and scalable bit-
stream can be used in heterogeneous networks with a wide range of terminals, both in
terms of processing power and bandwidth. Our bit-stream does not impose on the less
computationally powerful terminals the need of building detail trees as deep as re-
quired by the maximum LOD to follow the logical branching of the SPIHT algorithm,
because the wavelet coefficients are sent on a per-LOD basis, thus achieving a “local”
SNR scalability within a “global” spatial scalability.

Entropy coding has also been studied as a post-processing solution, and proven to
provide an important benefit in compression efficiency, especially in the PLTW algo-
rithm, compared to the additional complexity added to the decoder.

In particular, we have shown how our PLTW technique provides a substantial ad-
vantage over MPEG-4’s WSS tool, which is the only similar one in a current ISO
standard. We therefore believe that our technique should be considered for future ver-
sions of MPEG-4’s AFX toolset, especially if one of its targets will be 3D Graphics
applications for mobile terminals, in which the view-dependence offered by its cur-
rent WSS tool would be much less important than the computational complexity and
bandwidth savings offered by PLTW.

Finally, we would like to stress that, although we have developed our technique
within the field of 3D model coding, it should yield the same excellent results when
applied to image coding, or to any other problem addressable with the SPIHT
algorithm.
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